Ma

KEY STAGE

TIER **6–8**

Mathematics test

Paper 2

Calculator allowed

First name	
Last name	
School	

Remember

- The test is 1 hour long.
- You may use a calculator for any question in this test.
- You will need: pen, pencil, rubber, ruler, an angle measurer or protractor and a scientific or graphic calculator.
- Some formulae you might need are on page 2.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marker's use only

TOTAL MARKS	
Borderline check	

Instructions

Answers

This means write down your answer or show your working and write down your answer.

Calculators

You **may** use a calculator to answer any question in this test.

Formulae

You might need to use these formulae

Trapezium

$$Area = \frac{1}{2}(a+b)h$$

Prism

area of cross-section

Volume = area of cross-section × length

1. In a survey, 60 people were asked:

What kind of newspaper did you buy today?

Here are the results.

Type of newspaper	Number of people
Morning newspaper	35
Evening newspaper	10
No newspaper	15

Complete the pie chart to show this information.

3

2 marks

KS3/07/Ma/Tier 6-8/P2

2. Look at the information.

$$x = 4$$
 $y = 13$

Complete the rules below to show **different** ways to get y using x. The first one is done for you.

To get y, multiply x by ____ and add ___ 5

This can be written as y = 2x + 5

This can be written as y =

1 mark

To get y, multiply x by _____ and subtract ____

This can be written as y =

1 mark

To get y, divide x by _____ and add ____

This can be written as y =

3. The diagram shows a shaded parallelogram drawn inside a rectangle.

What is the **area** of the shaded parallelogram?

You must give the correct unit with your answer.

2 marks

5

4. Write the missing numbers.

1 mark

1 mark

5. The value of π correct to 7 decimal places is:

3.1415927

(a) Write the value of π correct to **4 decimal places**.

1 mark

(b) Which value below is closest to the value of π ? Put a ring round the correct one.

$$3\frac{1}{7}$$

$$\left(\frac{16}{9}\right)^2$$

Enlarge the shaded shape by a scale factor of 2, using P as the centre of enlargement.

Isometric grid

7. (a) Here are two equations.

$$k = a + b$$
$$a + b + k = 30$$

What is the value of k?

1 mark

(b) Look at this information.

$$10 = c + d$$
 c is one more than d

What is the value of c?

1 mark

(c) Now look at this information.

$$10 = e + f$$
 e is more than f

What else can you say about the value of e?

8. A pupil investigated how the teachers at his school travel to work.

The table shows the results.

Number of teachers who travel by car	Number of teachers who do not travel by car	
18	7	

(a) What **percentage** of these teachers travel by car?

(b) 18 teachers travel by car. Some of these teachers travel together.

Write the missing frequency in the table below.

Number of teachers in one car Number of cars	
1	
2	4
3	2

1 mark

(c) What is the **mean** number of teachers in each car?

2 marks

9. (a) Jenny wants to multiply out the brackets in the expression 3(2a + 1)

She writes:

$$3(2a+1) = 6a+1$$

Show why Jenny is wrong.

1 mark

(b) Sandeep wants to multiply out the brackets in the expression (k + 4)(k + 7)

He writes:

$$(k+4)(k+7) = k^2 + 28$$

Show why Sandeep is wrong.

10. A computer is going to choose a letter at random from an English book.

The table shows the probabilities of the computer choosing each vowel.

Vowel	А	E	I	0	U
Probability	0.08	0.13	0.07	0.08	0.03

(a) What is the probability that it will **not** choose a vowel?

2 marks

(b) The probability that the computer will choose the letter **T** is **0.09**

The computer chooses a letter at random, and then another, and then another.

What is the probability that these letters will be **E, then A, then T**?

11. I am going to use a wooden beam to support a load.

The cross-section of the beam is a rectangle.

The formula below gives the greatest load, Mkg, that a beam of this length can support.

$$M = 5d^2w$$
 where d is the depth of the beam in cm, w is the width of the beam in cm.

I can place the cross-section of the beam in two different ways.

In which way will the beam be able to support the greater load?

Calculate the difference.

The _____ way supports the greater load,

with a difference of _____ kg.

12. One day, each driver entering a car park paid exactly £1.50

Car park

Pay exactly £1.50 to enter

Machine accepts only £1 coins and 50p coins

Here is what was put into the machine that day.

Number of £1 coins 136

Number of 50p coins 208

On that day, what percentage of drivers paid with three 50p coins?

0

13. (a) Look at the triangular prism.

Work out the volume of the prism.

(b) One face of another prism is made from 5 squares.

Each square has side length 3cm.

Not drawn accurately

Work out the volume of the prism.

14. The graph shows a straight line with gradient 1

(a) On the graph, draw a different straight line with gradient 1

1 mark

(b) The equation of another straight line is y = 5x + 20Write the missing number.

1 mark

(c) A straight line is **parallel** to the line with equation y = 5x + 20It passes through the point (0, 10)

What is the equation of this straight line?

15. This shaded shape is made using **two semicircles**.

One semicircle has a diameter of 20cm.

The other has a diameter of **30cm**.

Calculate the **perimeter** of the shaded shape.

____ cm

2 marks

The table shows the number of boys and girls in two different classes. 16.

	Class 9A	Class 9B	
Boys	13	12	
Girls	15	14	

A teacher is going to choose a pupil at random from each of these classes.

In which class is she more likely to choose a boy?

You **must** show your working.

Tick (✓) your answer.

Class 9A Class 9B

17

- **17.** The triangles in this question are not drawn accurately.
 - (a) Use Pythagoras' theorem to explain why triangle A must be right-angled.

1 mark

(b) Triangle A is enlarged to make triangle B.

Use similar triangles to show that d = 9.2 cm.

(c) The diagram shows the Earth and two other planets.

Planet P is 6.9×10^7 km from Earth.

How far is Planet P from Planet Q?

Give your answer in standard form.

1 mark

_____ km

18. Look at the equation in the box.

$$x + (x+1) + (x+2) = y$$

Use it to help you write the missing expressions in terms of y

The first one is done for you.

$$5 + x + (x+1) + (x+2) = \underline{y+5}$$

$$(x+5) + (x+6) + (x+7) =$$

$$2x + 2(x+1) + 2(x+2) =$$

$$(x+a) + (x+1+a) + (x+2+a) =$$

19. Here is part of a newspaper report about wildlife in a country in Africa.

The number of gorillas has **fallen by 70**% in the last ten years.

Only about **5000 gorillas** are left.

About how many gorillas were there in this country ten years earlier?

- **20.** On a street, there are **100 houses**.
 - 60 are terraced houses.
 - 30 are semi-detached.

The rest are detached.

The table shows the mean number of bedrooms in each type of house.

Type of house	Mean number of bedrooms
Terraced	2.5
Semi-detached	3.3
Detached	4.1

What is the mean number of bedrooms per house on this street?

21. I am thinking of a number.

When I subtract 25 from my number, then square the answer,

I get the **same result as**

when I square my number, then subtract 25 from the answer.

What is my number?

You must show an algebraic method.

22. (a)	One light year is approximately 943000000000 kilometres. Write this distance in standard form.	
	km	1 mark
(b)	A star called Wolf 359 is approximately 7.8 light years from Earth. About how many kilometres is this? Write your answer in standard form.	
	km	1 mark

23. I have a square piece of card.

I cut a triangle from each corner so that the remaining card is in the shape of a **regular octagon**.

Not drawn accurately

The **perimeter** of the regular octagon is **32cm**.

Work out length y

y =_____ cm

24. Look at the simultaneous equations.

$$x + 2y = a$$

$$x + y = b$$

(a) Write an expression for y in terms of a and b

1 marl

(b) Now write an expression for ${\bf x}$ in terms of a and b Write your expression as simply as possible.

$$x = \underline{\hspace{1cm}}$$

END OF TEST

satspapers.org